PHYSICAL REVIEW E VOLUME 59, NUMBER 5 MAY 1999

Critical exponents for diluted resistor networks
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An approach by StephePhys. Rev. B17, 4444 (1978] is used to investigate the critical properties of
randomly diluted resistor networks near the percolation threshold by means of renormalized field theory. We
reformulate an existing field theory by Harris and LubenfRitys. Rev. B35, 6964(1987)]. By a decompo-
sition of the principal Feynman diagrams, we obtain diagrams which again can be interpreted as resistor
networks. This interpretation provides for an alternative way of evaluating the Feynman diagrams for random
resistor networks. We calculate the resistance crossover expgnamtto second order ie=6—d, whered
is the spatial dimension. Our resut=1+ e/42+ 4¢%/3087 verifies a previous calculation by Lubensky and
Wang, which itself was based on the Potts-model formulation of the random resistor network.
[S1063-651%99)04105-7

PACS numbgs): 64.60.Ak, 64.60.Fr, 72.80.Ng, 05.70.Jk

I. INTRODUCTION reported only rarely, e.g., by Fourcade and TremH23].
The complexity that the field theory of random resistor net-

Percolation[1] is a leading paradigm for disorder. With works has reached might be a reason for this. Here we refor-
regard to possible applications, transport properties, e.gmulate a field theory by Harris and Lubengky7] based on
electric conductance, are of particular interest in percolatioptephen in a way that we believe is less complex and more
theory. Electric transport on percolation clusters is comdntuitive. We present in detail a calculation ¢fup to second
monly modeled by a random resistor network. In this modelorder in_e. We hope this f_osters further calculations of this
bonds on a-dimensional lattice are occupied with probabil- tyP€ which might appear in the future.
ity p and unoccupied with probability-1p. Each occupied
bond has a finite nonzero conductaneevhereas unoccu-
pied bonds have conductance zero. Suppose the system isin this section we outline the essentials of the derivation
near the percolation threshold, i.p.js close to the critical of a field theory for random resistor networks due to Stephen
concentratiorp. above which an infinite cluster exists. If one [14] and Harris and Lubensk{17]. We will provide the
measures the resistanBéx,x’) between two lattice sites  reader with indispensable background and clarify certain
andx’ known to be on the same cluster, one finds that thedoints.
average over all possible configuratioMsé obeys [2,3]
M&~|x—x'|#'", wherew is the correlation length exponent
defined byé~ (p—p.) ~”. The entire probability distribution Consider ad-dimensional lattice. Each bond is occupied
for the resistance scales with the single expongii,5]. by a resistor of conductanee with probability p or unoccu-

The theory of random resistor networks broke ground inPied with probability I-p. Moreover, each lattice site is
the 197046—12]. Kasteleyn and FortuifiL3] realized a con- connected to the ground by a capacitor. For convenience, all
nection between the random resistor network andothe0 capacitors are taken to have the value unity. Kirchhoff's law
limit of the g-state Potts model. Stephéi4] found an ap- applied to site reads
proach connected to they model. A Potts-model-based for-
mulation[2,15] enabled Lubensky and War6] to calcu- QiZE o j(Vi=V)+li=ioV;, (2.1
late the crossover exponert up to second order k=6 j ’
—d, d being the spatial dimension, ag=1+ e/42 whereQ; andV;, are the charge and the potential at sjtend

+4€2/3087. Nevertheless, the approach by Stephen has been. . ; )
more fruitful [17]. For example, it has been employed to @ is the corresponding frequendy.is an externally imposed

. . current and the sum runs over all nearest neighbors. In order
calculate¢ for the random resistor network up to first order . :
) . fo obtain a solution for the voltages, E@.1) may be cast
in € [17], several crossover exponents for a diluted network

of Josephson junctiorf48], ¢ for a network with a singular Into matrix form,

Il. THE MODEL

A. Kirchhoff’'s equations

distribution of resistancelsl9], noise exponents for the ran- sv=1, (2.2
dom resistor network with fluctuating conductan¢2g|, as ) ) )

well as crossover and noise exponents for a randomly diluteBY SettingS.j=—o;; andS ;=iw+Zjo; ;. Forw#0 the
network of nonlinear resistorf21]. However, we are not inverse ofSis well defined and we can write

aware of any work up to now calculating based on this V=51 2.3

approach up to second order dn
The state of the art in the theory of random resistor net-The limit «— 0 requires some cautiousness. To characterize
works dates back to the 1980s. Since then, progress has beelnstersC we define vectorg(C) with €,(C)=0 if i ¢« C and
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e(C)= N(C)~Y2if i e C, whereN(C) denotes the number of Wwith the sum running over all nearest-neighbor pairs on the

sites belonging t@. The vectors are eigenvectors &: backbone angV} denoting the corresponding set of voltages.
In terms of P, Kirchhoff's equation(2.1) arises as a conse-
Se(C) =iwe(C). (2.4 quence of the variation principle
Thus the inverse 0§ may be written as g 11
—|5P{VH+ D 1 V| =0. (2.14
1 G o~y aVi| 2 K
Si=1, TS (2.5

Equivalent to Eq.(2.13, the power can be expressed in

with S~ summarizing the part ! that stays finite in the terms of the currents as

limit @—0, z,;=N(C)"*if i,j eC andz ;=0 if i andj are
not located on the same cluster. From Ej5) we conclude P=R(x,x')12=>, a,z,ll ﬁJ . (2.15
that singularities due to zero modes can be regularized as far k.l

as the infinite cluster is concerned by taking the thermody- .
namic limit beforew—0. In the remainder of this paper we Suppose the backbone contains closed loops as subnetworks

focus on vanishings unless stated otherwise. with currents{I("} circulating independently around these
Suppose a curretitis put into a cluster at siteand taken loops. Then.the current flowing through a certain bond is not
out at sitex’. Those sites connected to bottandx’ by two only a function ofl but also of the set of loop currents:
mutually nonintersecting paths are constituting the backbone I o= O 21
betweenx and x’. The current at a sité belonging to the ki =ha (D). (2.16

backbone may be written as Conservation of charge holds for every ramification of the

1i=1(8 x— & x) (2.6) backbone and this gives rise to another variation principle:
and the voltage at siteis simply d
. TP({I(')},I)ZO. (2.17
Vi=(S =Sl 2.7 l

The difference in voltage between the source and the sink iEdquation(2.17) may be used to eliminate the loop currents
and thus provides us with a method to determine the total

V=V =[Sa+S. 5, —2S 411, (2.8)  resistance of the backbone via Eg.15.

X, X!
which states that the resistanRéx,x’) between sitex and B. Replica formalism

x' reads . . _ . L.
From the discussion above it is evident that our task is in

(2.9 principle to invert a random matrix. This inversion can be
generated by Gaussian integration. However, we are inter-
Different cases may be distinguishedxlandx’ lay on the ~ ested in the average resistan; and hence the average
same cluster, then over all possible realizations of the diluted configuration for
fixed p remains to be performed. This can be achieved by
(2.10 employing the replica techniqy&3]. The network is repli-

R(x,x")=S1+S,%, —2S

X, X' "

R(x,X)=S 1+S, ", — 25}

X, X" "

N catedD-fold: V—V=(V®, ... v®). The replication pro-
If xandx’ are not connected, théﬁ;zi;o and hence cedure leeds to the extended generating function
1 P 1
R(x,x’)=E(ZX,X+ZX,,X,)+S;§+S;,1X,. (2.11) <Z‘D IT 11 de‘ex%—EP+i)_:.\_7)>
’ ! i a=1
C
We see thaR(x,x")—x for @—0 if xandx’ are not on the 1. -
same cluster. In the limit of widely separated sites one has ={expg — §>_\'§ A , (2.1
S.1,—0. Thus the resistanc®. between two infinitely ¢

X, X!
separated points on the infinite cluster is with the power
R.=S 1+S ', =251, (2.12 .

X %! X X pP=V. \_/:. ' Vi(a)si,jV}o» (2_19)
with the last equality holding for homogeneous systems. ’

Now we turn to the poweP=1(V,—V,/) dissipated on N o
the backbone. It may be written as and wherex - V=3; A{?V{? . The normalization constant

Z is adjusted in the usual way:
P=ROX) (V= Vi) 2= 2 ari(Viem Vi) 2=P({V})

1
213 z=f H dviexp(—i_.z\_/). (2.20
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The choice)ti=)f(5iyx— i x») provides us with a generating 1 .
function for the average resistance: (2M)P 2 expiX: 0)= 65 5 modomar)  (2.278
4
N2
<¢}:(X) ‘p—}:(xr»repz exp( - ?R(nyl)) , and
C
(2.21
1 .
where (2M)D Z expliN- 0)= 3556 mod2mag  (2.270
A
Yr(X)=exp(ix-Vy), X+#0 (222 do hold. Equatior(2.27) provides us with the Fourier trans-
form

and(- - - )rep denotes the average over all replicated voltage
and lattice configurations. An expression similar to Eq.

(2.21) holds for the resistance to infinity: Dj(x)=(2M) P X exp(iX- ) yy(x)= 85,5, —(2M) P
N#0
N2 (2.28
<¢):(X)>rep: exp( - ?Roo) . (2.23 _ N
c with the condition
As we shall see later on, it is useful to define an indicator

function that is unity ifx andx’ lay on the same cluster and 2 d4(x)=0. (2.29
zero otherwise. Consider the limit—co. From the discus- o

sion in Sec. Il A it is clear thaR(x,x’)=0 if x andx’ are

connected an&(x,x’) == otherwise. This suggests defining Note that® is merely a Potts spifi24] with q=(2M)®
the indicator function in terms of the average States.

(x(X)_x(x")y over all replicated voltage configurations

for a given realization of the diluted lattice as C. Field theoretic Hamiltonian
XX )= lim () (X)), 29 We proceed with the evaluation of E(R.18. Carrying
X ) HJM( J-x(x) (229 out the average over the diluted lattice configurations pro-
vides us with the weight exp(H.) of the average
Similarly (- Drep:
x(X) = lim (g5(x)) (2.25 Hiep= —In{exp( = 3P))c
T i I
indicates ifx is located on the infinite cluster. 2 El b

Some remarks should be made at this point. Since infinite
voltage drops between different clusters may occur, it is not =S Intexd — %o (6:—0:)- (6 — b
guaranteed tha stays finite, i.e., the limit lirg_,Z® is not ZJ (exid = z0i,( P (0= )]
well defined. This problem can be regularized by switching (2.30

to voltage variables 6 taking discrete values on a

I?-d|mein3|0nal torus. The vgltages are discretized by se.ttln%y dropping a constant terMgIn(1—p) with Ng being the
6=A06k, whereA§=06y /M is the gap between successive number of bonds in the undiluted lattice, we obtain
voltages,fy, is a voltage cutoffk is a D-dimensional inte-

ger, andM a positive integer. The components lofare re- S S o

stricted to— M <k(®’<M and periodic boundary conditions Hrep= Z h(6)+ IE; K(6i— ), (2.3)
are generated by equating®=k(®mod(2M). The con- ’
tinuum may be restored by taking,—o and A6—0. By
setting Oy = 6,M, M=m?, and, respectivelyA = 6,/m,
the two limits can be taken simultaneously we—«. Note
that the limitD—0 has to be taken before any other limit. h(6)=—26-0 (2.32
Since the voltages and are conjugated variableg, is af-
fected by the discretization as well;

where

and
N=AMN, ANAO=, (2.26)

K(6)=—In

p 1 ..
wherel is aD-dimensional integer taking the same values as - p exr{ —390 0) ] - (233
k. This choice guarantees that the completeness and orthogo-

nality relations The Fourier transform oK,
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~ . 1 . g 1 - .
K(N)=— exp(—iN- 6 H=f x> [—<p(x,0)K(A,Aa)<p(X,0)
O T 29 of ) AF
p 1. 9 w73 5 5
XIn| 1+ rpex —50'0-0 s (234) +€(|D(X10) +h(X10)(P(X10) ’ (239)
where terms of higher order in the fields have been neglected
can be Taylor-expanded as since they turn out to be irrelevant. The coarse-grained ker-
nel and external field must resemble the features of the origi-
- * ) nal K andh. This gives
K(X)=7+ 2, wy(X?)P, (2.39
p=1

T ., W - 1 -
H=f % [§¢(x,0)2+§(w¢(x,0))z+ 5 (Ve(x,0))°
(4
with 7 andw,~o~P being expansion coefficients. Sinse i
decays exponentially iqéz, the serie2.35 may be termi_— + 9<p(x, )3+ I—w§2<p(x, 5)] , (2.40
nated after the quadratic term for largeFurther on we omit 6 2

factors (2M) P which become unity in the limib—0. We

define the discrete gradieRit; through where 7, w, and v are now coarse-grained analogs of the

original coefficients. Note that{ reduces to the usual
(2M)P-state Potts-model Hamiltonian by settimg=h=0

o =( ) T = () — v . as one retrieves purely geometrical percolation in the limit of
2 Vii(x)- V300 = 2 K00 §-5(x) vanishingh andw (oo,
(2.36 It is worth pointing out that the problem of calculating the
moments of the resistance distribution has been reshuffled:
and obtain ME= (X YRE(X)) e/ (x(x,X'))c may be obtained by
taking thekth derivative of
K(Ag=7-wAj, (2.370  im (g () r_ (X))
D—0
wherew=w;. Similarly, the right-hand side of Eq2.32 N2 N2\ K
may be viewed as the leading term of an expansion =(x(X,x"))c 1_? M%{Jr +H — 7) M‘§+ ]
I . (2.41
h(6)= 2, hy(6?)P (238 o
p=1 with respect tan? at A\?=0.
with h;=iw/2. D. Scaling properties

NOW we can set up a f|elq theoretic Hamiltonian in We conclude this section with a scaling analysis of the
compliance with the symmetries of the model. The average,  itonian (2.39. Let P denote the set of parameters

over the configurations of the diluted lattice renders the . ) i
: . . . w,,h,} andb some scaling factor for the voltage variable:
model symmetric under spatial translations and rotations!, P’ P

Another feature of the model is that it is local since only #—b6. By substitution of ¢(x,0)=¢'(x,b6) into the
nearest neighbors enter in EQ.1). In the limit of perfect ~Hamiltonian we get
transport —0) and in the absence of external fields, (

=0) the model is invariant against permutations of @ll H¢'(x,b6),P]
=(2M)P states of the Potts spinB;(x). If one allowsw, 1 ) A
#0, this S; symmetry is lost. The model remains gauge =j ddxz E@'(X,bﬂ)K(A,Aé)QD’(X,bb’)
invariant under a shift of the voltages by an arbitrary finite 0

potential as can be inferred from E@.1). This symmetry g ) R R
corresponds to translational invariance in replica space: +6¢'(X,b0)3+h(0)(p'(x,b0) . (2.42
@;(X)Hd)g_g,o(x). Moreover, we deduce from the quadratic
form of the power in Eq(2.19 that the model possesses an
O(D) symmetry in replica space. Additionally, admitting
h,#0 results in breaking of the gauge invariance.

We proceed with the usual coarse-graining step and re-
place the Potts spind ;(x) by the order parameter field § 1, ) —
#(x,6). By constructing all possible invariants of the sym- ZJ d Xz(;,: 5@ (X, 0)K(A,b%AG)¢"(x,0")
metries discussed above from,;@(x,é)p and gradients
thereof, the following Hamiltonian in the spirit of the
Landau-Ginzburg-Wilson functional is obtained:

Renaming the scaled voltage variabls=bé leads to

H[ @' (x,6"),P]

+ g¢’(x,§’)3+ h(b=16")¢'(x,6") . (2.43
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Clearly a scaling of the voltage variable results in a scaling
of the voltage cutoff:6,,—b#6,,. However, by taking the

limit D—0 and therm— oo, the dependence of the theory on
the cutoff drops out. No ultraviolet divergencies are encoun- (0.} ima00) A A A\
tered in integrations over voltage variables and hence the *'U""/'"%

voltages are no origin of anomalous scaling. We can identify
6' and @ and thus FIG. 2. The superficially divergent vertex functiofis andT 5.
Terms ofO(three loop have been neglected.

l"(pATgw :)—(

Hle(x,b),P1=Hl¢(x,6),P'], (2.44 IIl. TWO-LOOP CALCULATION

_ AND RENORMALIZATION
where P’ ={b?"w,,b~?’h }. We can conclude the follow-

ing implication of Eq.(2.44) on correlation functions defined A. Diagrammatic expansion
by To perform the renormalization program we start out with
a dimensional analysis. A trivial consequence of the fact that
Gn({x,8Y: 7 {w }):J Deoo(Xy,0,)- - - (X, 0n) the Hamiltonian(2.40 must be dimensionless is that the in-
TP volved quantities have naive dimensions-u~%, wi?

. ~u?, Y~pl9722 s 2 andg~pu® D2 wherey is a
> _ . ,LL,l,/{ I , T~ M5, andg~u » Wherep Is
exp—H[¢(x,0),P]), (249 convenient inverse length scale. The positive dimension of

the coupling constang shows that it is relevant fod<d,
where D¢ indicates an integration over the set of variables_ -6 Piing y

{e(x,6)} for all x and 6: The principal elements contributing to the diagrammatic
R R expansion are easily gathered from the Hamiltonian, namely
Gn({x, 0}; 7.{wp ,hp}) = Gn({x,b6}; 7,{b%Pw,, ,b‘th(J}). the vertex—g and the propagator
2.46
1-656 1 .6
The two-point correlation functio, is the Fourier trans- P2+ T WN2 - P2+ - WN2 _p2+ . (3.3)

form of (¢ (X)¥_x (X)) . We deduce from Eq2.41) that

- L which is displayed in Fig. 1.
NEMR((X); 7wy hg}) The superficial degree of divergenc® in any one-
=1\ 201 . 2 5 particle-irreducible diagram composed of these elements is
= (b7 ) MR((xX); 7, {0 wp ™ Php}). d=dL—2P, whereL denotes the number of loops aRdhe
(2.47 number of propagators. The topologic relation¥=3E
+2P andL=P—-V+1, with E being the number of external
The freedom to choosk has not been exploited yet. With legs andV being the number of vertices, lead fdr=d, to
the choiceb?=w"! the previous scaling relation turns into §=6—2E. Therefore the only superficially divergent vertex
functions arel’, andI'; (see Fig. 2

M&((X,X"); 7,{wp ,h,H=wWMg

p
X,X"); 7,3 — ,wPh . . .
( ) [Wp P B. Feynman diagrams as resistor networks

(2.48 We learn from Eq.(3.1) that the principal propagator
(bold) decomposes into two propagators. One of them is car-
Forp>1, coupling constants, only appear as/,/w". The  rying replica currents and we refer to it as conducting. The
associated exponepip— &, is of orderp—1 as mean-field w01 gne is not carrying’s and we call it insulating. This
analysis shows. This indicates that terms of onalgk® for  decomposition of the bold propagator allows for a schematic
p>1 give rise to corrections to scaling. We keep only thedecomposition of bold diagrams into sums of diagrams con-
leading termswv\?2 and h,=iw/2. By virtue ofw~¢ ! the  sisting of conducting and insulating propagators.
resulting scaling relation reads There is an important feature of the decomposition
scheme that we want to point out at the instance of the dia-
ME(x,X');7,0,0) =0 H(x,X');r,0lc), (2.49  9gram displayed in Fig. 3. The diagram reads

wheref is a scaling function ofv/c. kta,R
k .< % >k
N 3 2T R X
P, P - P - E
= e U
1
FIG. 1. The principal propagatdbold) decomposes into two k.
propagators. One of theftight) is carrying currents and we refer to ’
it as conducting. The other orfdashedlis not carryingh’s and we FIG. 3. A diagram encountered by decomposing the contribu-

call it insulating. tions tol's.
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o Nt S i
\‘1"’ : ' ! pWs .
Suob g _ 4 _
v ALY
— __..il K = 0 be--
TR i
' ' ~
. ' '
'

FIG. 4. An important feature of the decomposition of the bold
diagrams. By applying the decomposition scheme, one may obtair
subdiagrams which are connected to the rest of their diagram solel

by insulating legs. The hatched blob on the left-hand side stands fol _/O\_
; . = - -2
such a subdiagram. For each closed loop of conducting propagator:
a sum over an independerthas to be performed. In the limid o
—0, these sums merely result in multiplicative factors equal to 1.

Thus all conducting propagators can be replaced by insulating one: 12 _//\_ n
and there are no summations necessary in the subdiagram. . _\_/—
4 FIG. 6. Decomposition of the two-loop diagrams contributing to
g f 1 1 1 r
- — 2
2 % Jia T+K3HWA? 74K 7+K2
1 1 sistor network, thex’s are conserved in each vertex. The
X _ — (3.2 X-dependent part of a diagram can be expressed in terms of
T+ (k+q)2+wk? 7+ g7 +wk? its powerP:
where [y, is an abbreviation for (&) %fd%%dq. B S\ - -
Schwinger parametrization leads to ex WZ Sih{ | =exdWP(X\ {«})] (3.5
5 e s s .
g* * with Xj=X\;(\,{«}), where(apart from a factor-i) X\ is an
32=% X II ds - _
< JkqJoi=1 external current anfl} denotes the set of independent loop
5 currents.

% B E (s 4t sk The new interpretation suggests an alternative way of
ex Ti:1 Si—(S1+S;+Sg) computing the Feynman diagrams. To evaluate sums over
independent loop currents

—s4(k+ q)2_85q2) ex] — (S4+S5)Wr2— ;WA 2].

> exdwP(X,{x})], (3.6
3.3 fd
one can employ the saddle point method that is exact in our
The sum overk factorizes case since the power is quadratic in the currents. Note that
the saddle point equation is merely the variation principle
- ) D stated in Eq(2.17). Thus solving the saddle point equations
> exd —(s4+85)Wk’]= 2 ex — (s4+Ss)wk”] is equivalent to determining the total resistamR(gs;}) of a
“ (3.4) diagram, and the saddle point evaluation of E316) yields
and hence becomes unity in the lint—0. What we en- exi] — R({s}))w\?]. 3.7
counter here in our example is a particular instance of the ) )
diagrammatic rule formulated in Fig. 4. After a completion of squares in the momenta, the momen-
We apply the decomposition scheme to all one- and twolum integrations are straightforward. Thereafter, all diagrams
loop diagrams. The result is displayed in Figs. 5-8. are of the form

From the decomposition, another interpretation of the - -
i i istol (P? A% =1p(P?) = lw(P?)WAZ+ - - -
Feynman diagrams emerges. They may be viewed as resistof (P* P w
networks themselves with conducting propagators corre-

sponding to conductors and insulating propagators to open :J H ds[l—R({si})wX2+ - 1D(P{s)),
bonds. The Schwinger parametess correspond to resis- 0
tancesUi‘l and the replica variablesi)fi to currents. As (3.8

conservation of charge holds for every ramification in a re-

_O_ _Q_ : U v N 7/ N /7 \\

FIG. 5. Decomposition of the one-loop diagram contributing to  FIG. 7. Decomposition of the one-loop diagram contributing to
rz. Fs.
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FIG. 8. Decomposition of the two-loop diagrams contributing to

F3-
whereD(p?,{s;}) is a usual integrand of the® theory.

C. Renormalization

We use dimensional regularizatid@5] to compute the
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whereG = (47) 9T (1+ €/2) with T’ denoting the Gamma
function. We included the convergent termg?7~ <G /2

in Eq. (3.93 since it is important in the calculation of the
two-loop contribution to the correspondid@gactor. The ver-

tex functions(3.9) are apart from terms proportional T2,
identical to those of the Potts model.

The € poles are compensated by minimal subtraction. We
employ the following renormalization scheme:
r—1=2"1Z7,

y— =212y, (3.103

7z~ 3/223/2G ; 1/2u 1/2# 5/2_

(3.10b

w—ow=Z"1Z,w, g—g=

In minimal subtraction th& factors have to be determined
such that they solely cancel thepoles. We find

Z=1 Lu 37 u2+11U'2+o s 3.11
6c 432¢ T3 0w, (Bl
z—1+u 4ru 2+9uz+o 8 3.11
T (u’),  (3.11b
; 5u 319u? 65u Y o 311
Wt g e a3 T3e 2 O, (10
Z,= — 144" P9Uu 2+11u2+o 3.11
=1+4- -5 +115+0 %, (3119

with Z, Z ., andZ, being the known Potts-modé&l factors.

IV. RENORMALIZATION GROUP EQUATION
AND SCALING

various diagrams obtained by decomposition. Appendix A
outlines these calculations in terms of examples As the re- The unrenormahzed theory has to be independent of the

sult of ane expansion up to second orderén?, we obtain
for the superficially divergent parts of the vertex functions

5/2[

1 5 . G2 9
T h2. 2 4 "€ _—€)| =
+6p+6w)\]+g 627’ {<4

€
1+ 2

[o(p,\;7,g,W)=7+p +W)\2—g 5|7

45 11 7 )
+1—66 T+ 3—6+EZ€ P
+ 65+169 N2 3.9
and
I'3({0,X};7,9,0)=g— 29 7
5G§ (11 13 300
+9 ?T ?4‘?6 , ( . )

length scalew ™! introduced by renormalization, i.e.,

(9 © > o o o
u——Gn({p A} 7,9,W) =0

” (4.2

for all N. Equation(4.1) translates via the Wilson functions

Jdu dint
,B(U):M@. K(U)=pu P (4.29
B dInw _d
§(U)—MW, V(U)—Mﬁmz (4.2b

(the bare quantities are kept fixed while taking the deriva-
tives) into the Gell-Mann-Low renormalization group equa-
tion

0 J J

—+B—+Tk—+W
Ron TR TR TVt 2

X GN({X,X}; 7,u,W, 1)

=0. (4.3
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The particular forn_"n of.the Wilson functions can be ext_racted GN({X,X}; ULW, )
from the renormalization scheme and théactors. We find

—|(d=2+ n)N/ZGN({b(,l §*/271X’}; [ 71/V7‘,U* ,W,M)

+0(u%), (4.49 4.9

(7 671,
B(u)=u Eu ﬁ“ €
with the well known critical exponents for percolation,

(u) >3 2+0(u®) (4.4b 1 206
K(U)=—=<U———=U u .
6 108 : A 2 3
n=vy 216 92616 +0(€°) (4.10
2 47
T2 3 and
Z(u) 3u 36u +0(u?), (4.409
C2k) e e 2 a1 %)
1 37 v=(2=07) =5 53¢t 370225 TO(€):
y(U)=—=u+ =—=u?+0(ud). (4.40 (4.11)

6 216

¢ remains to be determined. A glance at Ej41) shows
The renormalization group equation is solved by the methoghat
of characteristics. The characteristics read

B Mi~X"2. (4.12
o - — R
|W:M with  u(1)=p, (458 The scaling properties of can be deduced from E¢4.9)
and hence
ﬁU — . — 1 |y y'|2-CF
155 =B@()  with u(1)=u, (4.5b) Mz~ [x=x"[*"¢". (4.13
Thus we finally obtain
J — _ _
|=InT=«x(u(l)) with 7(1)=7, (4.50 B PN i 2 3
al d=v(2—{*)=1+ 426+30876 +0(€°) (4.19
0 . . . . .
Iﬁlnw=§(u(l)) with  w(1)=w, (4.50 in conformity with the result by Harris and Lubensky.
V. RATIONAL APPROXIMATION
Iilnf= y(u(l)) with Z(1)=1. (459  Since the exact value g is known to be unity not only
al in d=6 dimensions but also in one dimension, it is reason-

able to do a rational approximation. The featubéd=1)
Solving the first one is trivial. For the remaining character-=1 is incorporated by rewriting) as
istics, fixed point solutions are determined. The fixed point

condition 8(u*) =0 leads to the infrared stable fixed point 14 1 N 4 187 24 03 5.1
$=1%€l 327 3087 18azs0’ TO€)) GBI
L 2 671 , 3
U* =z e+ 5557€ T O(e). (4.6 peing identical up to second order to teexpansion result.

In Fig. 9 we compare the analytic result to numerical esti-
mates ford=2 by Grassbergef26] andd=3 by Gingold
and Lobb[27]. The extrapolated valu¢(d=2)=1.04 devi-
ates from the simulation result 0.9829.008 by roughly
5%. In d=3 one obtainsp(d=3)=1.05 compared to the
numerical estimate 1.1170.019. Here the deviation is about
69%.

The good agreement should be taken with caution. Due to
the rich structure of the exponentin the percolation prob-
lem, the exponenty= vy, =d¢/v—2+ 7 might be better
suited for comparison to simulations. Rational approximation
of ¢ yields

We obtain

Gn({X X} 7u,w, i) =17 NG (fx N} 71 <7 u* wilé ’/EI ),7)
4.

where y* = y(u*), «*=«x(u*), and * ={(u*) as a fixed
point solution of the renormalization group equation.

To get a scaling relation for the correlation functions, a
dimensional analysis remains to be performed. It yields

GN({X’K}I T1u1W7M)

5 187 334, .
V=€l ~ 31 3087 "15a35° TO(€) | (62

= 4N (T WYY 0 20,1,1).

4.8
This is compared to the simulations in Fig. 10. The agree-
From Eq.(4.7) and Eq.(4.8) we derive the scaling relation ment ford=3 is reasonable. As expected, the discrepancy
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1.2 T T T T 1.2
/l N _2
e 1
L1} ié.// 11.1
//;if/ FIG. 11. Sincel'; is superficially divergent with5=0, it is
e —— e sufficient to evaluate the diagrams at zero external momenta and
/ \\\ currents. Thus all diagrams resulting from one bold three-leg dia-
1.0¥ . 1.0 gram are giving the same contribution. The decomposition results in
a mere factor, being identical to the tensor contraction in the Potts
model.
9% 1 2 3 4 50
6 d We are positive that our formulation will foster future
€e=6—

investigations in transport on percolation clusters. As we will
FIG. 9. Dependence of the exponefbn dimensionality. The  report shortly in a separate publication, it proved to be ad-
expansion up to firstdiamond$ and second ordesquaresas well  vantageous for nonlinear random resistor networks for which
as the rational approximaticftriangleg are compared to numerical V~1", In the limitr — + 0, the resistance between two points
results(circles by Grassberger and Gingold and Lobb. They deter-hecomes essentially equal to the length of the shortest paths
Iml_”ed tth_e eXrl)Cinzﬂttf((;r the ;Onflm(:::llvmf):, EINLp_ZpJ '_byks'm”' between these points. Our result for the exponent for this
ations.t Is related 10¢ via o=1—(AQ—<2)v. INn A=~2, v IS KNOWN _ H H L —0_ _
exactly[28,29: v=4/3. Ford=3 we use a Monte Carlo result by so-called  chemical dlzstance?fjmm 2 , /6 [937/588
. L +45/49(In2-9/10In3)|(e/6)-+ O(€°) verifies a previous
Ziff and Stell[30]: »=0.875+0.008. . e ,
calculation by one of ug31]. The limitr —« is related to the

increases fod decreasing. Fail= 2, the analytic result looks "ed (Singly connectepbonds. Our two-loop calculation gives
unrealistic. The structure af appears to be too rich to be unity for the corresponding exponent in accordance with re-
reproduced at low dimensions by a series of a few terms. sults by Blumenfeld and Aharor{2] and de Arcangeligt
al. [33]. Moreover, our formulation enabled us to calculate
VI. CONCLUSIONS AND OUTLOOK the percolation backbone expondhy to third order ine by
considering the limitr——1. We find Dg=2+¢€/21

We have presented a study of randomly diluted resistor 172¢2/9261+ 2] — 74639+ 2268Q(3)]€%/4084101, where
networks based on an approach by Stephen. The motivation genotes the Riemann zeta function.

has been twofold. First, we wanted to verify a result for the
resistance crossover exponehtobtained by Lubensky and
Wang using a different approach. Our result s in ab-
solute agreement with that of Lubensky and Wang. Second,
we wanted to simplify the theory of random resistor net- We acknowledge support by the Sonderforschungsbereich
works. We demonstrated how a decomposition scheme lead37 “Unordnung und groRe Fluktuationen” of the Deutsche
to a new interpretation of the involved Feynman diagramsfForschungsgemeinschaft.

they may themselves be viewed as resistor networks. The

new interpretation of the Feynman diagrams greatly im-

ACKNOWLEDGMENT

proves the handling of the calculations. APPENDIX A: EVALUATION OF DIAGRAMS
0 1 2 3 4 5 In this appendix we want to sketch the computation of the
0.5 , , . : 0.5 : ) L :
Feynman diagrams. The evaluation of contribution$'{ds
0.0-'\ 100 straightforward. By virtue o5=0 one can set external mo-
_ost = ] ~05 menta andvX’s equal to zero. Hence all diagrams resulting
\45\*5</ from one bold diagram are giving the same contribution and
-1.0¢ T~ 33710 the decomposition reduces to a mere factor. An example is
i<t 1 given in Fig. 11. The diagrams obtained in this fashion are
= s s Fig. 11. The d btained in this fash
the usual ones found in the literature on the Potts m[@i|
20} \ 1-20 and can be evaluated by standard procedL.86k
oy N 25 _ Now we turn toI',. Sincel’, is superﬁma_llly dlverggnt
with degrees=2, a Taylor expansion up to first order i}
-390, 1 5 3 4 5730 andw\? is sufficient. Contributions of order zero and pro-
e=6-d portional top? are again standard. Thus we restrict ourselves

to demonstrate the computation of contributiond topro-
FIG. 10. Dependence of the exponefpt (t—y)/v+2—d on

dimensionality. As in Fig. 9, diamonds and squares refer toethe portional t.O\.N)‘z' .

expansion, triangles to the rational approximation, and circles to We revisit our example of Sec. ”1 and start with £8§.3).
numerical results by Grassberger and Gingold and Lobb. For thé&s we have concluded, the sum ovemerely gives a factor
exponenty governing the mass of finite clusters, we use Of 1. After a completion of squares in the momenta, the
=43/18[28,29 for d=2 andy=1.795+ 0.005[30] for d=3. momentum integrations are straightforward. We get
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FIG. 12. The resistor network corresponding to the rightmost
diagram in the first line of Fig. 6. The conducting propagators are

At this stage it is useful to perform a change of variablesinterpreted as conductors whereas the insulating propagators are

S4—>t1, 85—>t2, Sl~>t3X, Sz*)tgy, andS3—>t3(1_x_y) In
these variables the integral reads

(AD)= 94 ! jwdt dt,dt
2 (amo T
11 ex — (it t
dexf dy2 -7ty +ta+ts)]
0 0 [taty+taty+tyty] 42

X exp — tzXWN2). (A2)

After expansion for smalivn?, the integrations with respect

interpreted as open bonds. The Schwinger paramstemrespond
to resistances.

.g*GE (1 3
(A6)=—W)\2—?T S (A7)

2 6e 8]’
As a second example we take the rightmost diagram in the

first line of Fig. 6. This diagram corresponds to the resistor
network in Fig. 12. The total resistance of this network is

(S1+S,)(S3+Sa)

R(s$1,S,,53,54) = ——m—.
(S1,52,53,54) (S1+S,+S3+5,)

(A8)

to x andy are easily carried out. We omit the term of order

zero and obtain

® 1 ex T(ty+t+t
(A2)=—%( )df dt,dt,dt -7ty +t+t3)] 5

’6 [taty +tgto+ tltz]d/2
(A

Equation(A3) can be expressed in terms of a parameter in-

tegral,

1
Mi(a,b,c)=
(a,b.c) fp,q(a+pz)(b+q2)[0+(p+CI)2]

1
(477)"[ dt,dt,

exr[ —(at +bty,+cty)]
[t3t1+ taty+tyt,]Y2
(A4)

by taking partial derivatives with respect & b, or c ata

=b=c=7. This parameter integral was introduced by
Breuer and JanssdB6]. They find in dimensional regular-

ization
G%(({1 25
l 3—-€ 3—-€ 3—¢€
M*(a,b,c)= 6e [ 12(a +b " ¢+c "¢
3+21 27¢(b+c)+b? f(a+
—t7|fa” “(b+c) (a+c)
+cz‘6(a+b)]—3abc}. (A5)
In terms of this parameter integral, E3) reads
(A3)=—w>€29—4 Lo (A6)
2 6 (9C3
a=b=c=r71

and is easily evaluated yielding

Hence the saddle point evaluation of

g4 w 2 5

—Ef f [1 dsexp —72, s—(s1+5)k>— 5507
2 7 Ja Jo izt =1

X ex — (Sy+S4) (K+q)2— (S1+ Sp) W2

—(S3+Sy)W(K+X)?] (A9)
gives
g* wa? (= (S1+55)(S3+54)
(A9)——?(4 )d fo 1 (S1+Sptsatsy)

[S5(S1+ S+ Sg+S4) + (S+54) (51 +55) 142
(A10)

where we have already carried out the momentum integra-
tions and the expansion for smai2. The change of vari-
abless,—tX, s3—t1(1—X), $1—tyy, S3—t(1-Yy), and
ss—t3 recasts the integral into

_ g’
(A10)= 2 |
1 exg —7(ty+tr+t
xfdxdytltz Lottty 322]
0 [t3tl+t3t2+tlt2]

» (tax+ty) [t (1—x)+t(1-y)]
ti+ts '

(A11)

Carrying out the integrations with respectx@ndy yields
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by . X d 6 8

2 :w}\28ip2 £ _<>_ =3 M321+d7'M421+d7'M331+d13
p=0

s X 4 1
X sy O p =:§N@2J{75A43L2
=wA\? —
op?
o \i — oML, + MD
FIG. 13. A convenient way to extract the contributions propor- _\ Teal 2,22

tional tow\? from diagrams not containing insulating propagators.

-----

_2M3},2,1
4 2 o
g * tyts A ,d_4M1 4 Ml
(A11)=———f dt,dt,dts —— =M+ 5TM50,

2 (4mlo TP R d d
exg — 7(tytt,+ts) 1 1 _/O\i _ ol 2
[t3t1+t3t2+t1t2] 2 6 6 2 s -

Al2 X 1 1

e ‘ = gMian g

Since a similar structure emerges in several diagrams, we

introduce an additional parameter integral

_opql 1
=2M; 1, + My,

Mz(a,b,c) f dt dt,dt,—2 182 FIG._ 14. LIStII’l% of COI’]'-[I’IbutIOI’IS to_ the dlagr:?\mmatlc expgn_smn
)d ti+t, proportional tow\~. The right-hand sides remain to be multiplied
by a factor—w)szE/e, which we dropped for notational simplic-
exd —(at;+ bty +cts) ] ity.
X (A13)
[tats+tato+tst,]42

We calculate M?(a,b,c) in dimensional regularization,

which yields
1 5
M?(a,b c)— ~*3
1/1 19
T3leT)C

Now we can evaluate EqA12) by taking derivatives of

ables play exactly the same role in these diagréses Fig.
13). Appendix B gives an overview of the two-loop diagrams
contributing toI', in terms ofM* andM?2.

( 2 e+b2 E)

1
c? “+ab+ 3 (a+ b)C} APPENDIX B: THE DIAGRAMS IN TERMS
OF PARAMETER INTEGRALS

(A14) ) ) o
Here we list our results for the diagrams contributing to

I',, as far as they have not been stated in Appendix A. For
convenience we use the notation

M2(a,b,c):
i+ -3 i+j+1-3
- g4 1 (92M 1 (92M 1,2 ( )I+]+ d
= _—wWN2Z | — M - .
(A12)=—wh > [3 P b + 29adb| [ LT (i—D!IG-D)1—D)! gai-1gpi g 1
a=b=c=r1 =b=c=7
(A15) XMY4a,b,¢)|acp_c—, (B1)
We finally obtai
e finally obtain and
—’2g4 Gf —€ 1 1
(A1B)=—wWA*Z — 71 -+ ¢ (A16) |3=f —_ (B2)
p (r+p?)°

The remaining two-loop diagrams contributinglfe can
be treated in a similar fashion. However, the two diagrams infhose parts of the diagrams proportlonalvt/o,\2 are dis-
Fig. 6 containing only light propagators are calculated mosplayed in Fig. 14. The remaining parts can be inferred from
conveniently by observing that momenta and replica variliterature on the Potts model.
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