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Critical exponents for diluted resistor networks

O. Stenull, H. K. Janssen, and K. Oerding
Institut für Theoretische Physik III, Heinrich-Heine-Universita¨t, Universitätsstraße 1, 40225 Du¨sseldorf, Germany

~Received 8 December 1998!

An approach by Stephen@Phys. Rev. B17, 4444 ~1978!# is used to investigate the critical properties of
randomly diluted resistor networks near the percolation threshold by means of renormalized field theory. We
reformulate an existing field theory by Harris and Lubensky@Phys. Rev. B35, 6964~1987!#. By a decompo-
sition of the principal Feynman diagrams, we obtain diagrams which again can be interpreted as resistor
networks. This interpretation provides for an alternative way of evaluating the Feynman diagrams for random
resistor networks. We calculate the resistance crossover exponentf up to second order ine562d, whered
is the spatial dimension. Our resultf511e/4214e2/3087 verifies a previous calculation by Lubensky and
Wang, which itself was based on the Potts-model formulation of the random resistor network.
@S1063-651X~99!04105-7#

PACS number~s!: 64.60.Ak, 64.60.Fr, 72.80.Ng, 05.70.Jk
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I. INTRODUCTION

Percolation@1# is a leading paradigm for disorder. Wit
regard to possible applications, transport properties, e
electric conductance, are of particular interest in percola
theory. Electric transport on percolation clusters is co
monly modeled by a random resistor network. In this mod
bonds on ad-dimensional lattice are occupied with probab
ity p and unoccupied with probability 12p. Each occupied
bond has a finite nonzero conductances whereas unoccu
pied bonds have conductance zero. Suppose the syste
near the percolation threshold, i.e.,p is close to the critical
concentrationpc above which an infinite cluster exists. If on
measures the resistanceR(x,x8) between two lattice sitesx
and x8 known to be on the same cluster, one finds that
average over all possible configurationsMR

1 obeys @2,3#
MR

1;ux2x8uf/n, wheren is the correlation length exponen
defined byj;(p2pc)

2n. The entire probability distribution
for the resistance scales with the single exponentf @4,5#.

The theory of random resistor networks broke ground
the 1970s@6–12#. Kasteleyn and Fortuin@13# realized a con-
nection between the random resistor network and theq→0
limit of the q-state Potts model. Stephen@14# found an ap-
proach connected to thexy model. A Potts-model-based for
mulation @2,15# enabled Lubensky and Wang@16# to calcu-
late the crossover exponentf up to second order ine56
2d, d being the spatial dimension, asf511e/42
14e2/3087. Nevertheless, the approach by Stephen has
more fruitful @17#. For example, it has been employed
calculatef for the random resistor network up to first ord
in e @17#, several crossover exponents for a diluted netw
of Josephson junctions@18#, f for a network with a singular
distribution of resistances@19#, noise exponents for the ran
dom resistor network with fluctuating conductances@20#, as
well as crossover and noise exponents for a randomly dilu
network of nonlinear resistors@21#. However, we are no
aware of any work up to now calculatingf based on this
approach up to second order ine.

The state of the art in the theory of random resistor n
works dates back to the 1980s. Since then, progress has
PRE 591063-651X/99/59~5!/4919~12!/$15.00
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reported only rarely, e.g., by Fourcade and Tremblay@22#.
The complexity that the field theory of random resistor n
works has reached might be a reason for this. Here we re
mulate a field theory by Harris and Lubensky@17# based on
Stephen in a way that we believe is less complex and m
intuitive. We present in detail a calculation off up to second
order in e. We hope this fosters further calculations of th
type which might appear in the future.

II. THE MODEL

In this section we outline the essentials of the derivat
of a field theory for random resistor networks due to Steph
@14# and Harris and Lubensky@17#. We will provide the
reader with indispensable background and clarify cert
points.

A. Kirchhoff’s equations

Consider ad-dimensional lattice. Each bond is occupie
by a resistor of conductances with probabilityp or unoccu-
pied with probability 12p. Moreover, each lattice site i
connected to the ground by a capacitor. For convenience
capacitors are taken to have the value unity. Kirchhoff’s l
applied to sitei reads

Q̇i5(
j

s i , j~Vj2Vi !1I i5 ivVi , ~2.1!

whereQi andVi are the charge and the potential at sitei, and
v is the corresponding frequency.I i is an externally imposed
current and the sum runs over all nearest neighbors. In o
to obtain a solution for the voltages, Eq.~2.1! may be cast
into matrix form,

S=VI 5II, ~2.2!

by settingSiÞ j52s i , j andSi ,i5 iv1( js i , j . For vÞ0 the
inverse ofS= is well defined and we can write

V5S=21II. ~2.3!

The limit v→0 requires some cautiousness. To characte
clustersC we define vectorseI (C) with ei(C)50 if i ¹C and
4919 ©1999 The American Physical Society
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ei(C)5N(C)21/2 if i PC, whereN(C) denotes the number o
sites belonging toC. The vectorseI are eigenvectors ofS= :

S=eI ~C!5 ive~C!. ~2.4!

Thus the inverse ofS= may be written as

Si , j
215

zi , j

iv
1S̃i , j

21 , ~2.5!

with S=̃21 summarizing the part ofS=21 that stays finite in the
limit v→0, zi , j5N(C)21 if i , j PC andzi , j50 if i and j are
not located on the same cluster. From Eq.~2.5! we conclude
that singularities due to zero modes can be regularized a
as the infinite cluster is concerned by taking the thermo
namic limit beforev→0. In the remainder of this paper w
focus on vanishingv unless stated otherwise.

Suppose a currentI is put into a cluster at sitex and taken
out at sitex8. Those sites connected to bothx andx8 by two
mutually nonintersecting paths are constituting the backb
betweenx and x8. The current at a sitei belonging to the
backbone may be written as

I i5I ~d i ,x2d i ,x8! ~2.6!

and the voltage at sitei is simply

Vi5~Si ,x
212Si ,x8

21
!I . ~2.7!

The difference in voltage between the source and the sin

Vx2Vx85@Sx,x
211Sx8,x8

21
22Sx,x8

21
#I , ~2.8!

which states that the resistanceR(x,x8) between sitesx and
x8 reads

R~x,x8!5Sx,x
211Sx8,x8

21
22Sx,x8

21 . ~2.9!

Different cases may be distinguished: Ifx andx8 lay on the
same cluster, then

R~x,x8!5S̃x,x
211S̃x8,x8

21
22S̃x,x8

21 . ~2.10!

If x andx8 are not connected, thenS̃x,x8
21

50 and hence

R~x,x8!5
1

iv
~zx,x1zx8,x8!1S̃x,x

211S̃x8,x8
21 . ~2.11!

We see thatR(x,x8)→` for v→0 if x andx8 are not on the
same cluster. In the limit of widely separated sites one
Sx,x8

21→0. Thus the resistanceR` between two infinitely
separated points on the infinite cluster is

R`5S̃x,x
211S̃x8,x8

21
52S̃x,x

21 , ~2.12!

with the last equality holding for homogeneous systems.
Now we turn to the powerP5I (Vx2Vx8) dissipated on

the backbone. It may be written as

P5R~x,x8!21~Vx2Vx8!
25(

k,l
sk,l~Vk2Vl !

25P~$V%!

~2.13!
far
-

e

is

s

with the sum running over all nearest-neighbor pairs on
backbone and$V% denoting the corresponding set of voltage
In terms ofP, Kirchhoff’s equation~2.1! arises as a conse
quence of the variation principle

]

]Vi
F1

2
P~$V%!1(

k
I kVkG50. ~2.14!

Equivalent to Eq.~2.13!, the power can be expressed
terms of the currents as

P5R~x,x8!I 25(
k,l

sk,l
21I k,l

2 . ~2.15!

Suppose the backbone contains closed loops as subnetw
with currents$I ( l )% circulating independently around thes
loops. Then the current flowing through a certain bond is
only a function ofI but also of the set of loop currents:

I k,l5I k,l~$I
~ l !%,I !. ~2.16!

Conservation of charge holds for every ramification of t
backbone and this gives rise to another variation principl

]

]I ~ l !
P~$I ~ l !%,I !50. ~2.17!

Equation~2.17! may be used to eliminate the loop curren
and thus provides us with a method to determine the t
resistance of the backbone via Eq.~2.15!.

B. Replica formalism

From the discussion above it is evident that our task is
principle to invert a random matrix. This inversion can
generated by Gaussian integration. However, we are in
ested in the average resistanceMR

1 and hence the averag
over all possible realizations of the diluted configuration
fixed p remains to be performed. This can be achieved
employing the replica technique@23#. The network is repli-

catedD-fold: VI→VIW 5(VI (1), . . . ,VI (D)). The replication pro-
cedure leeds to the extended generating function

K Z2DE )
i

)
a51

D

dVi
aexpS 2

1

2
P1 ilIW •VIW D L

C

5 K expS 2
1

2
lIW •S=21lIW D L

C

, ~2.18!

with the power

P5VIW •S=VIW 5 (
i , j ,a

Vi
~a!Si , jVj

~a! ~2.19!

and wherelIW •VIW 5( i ,al i
(a)Vi

(a) . The normalization constan
Z is adjusted in the usual way:

Z5E )
i

dViexpS 2
1

2
VI •S=VI D . ~2.20!
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The choicelW i5lW (d i ,x2d i ,x8) provides us with a generatin
function for the average resistance:

^clW ~x!c2lW ~x8!& rep5K expS 2
lW 2

2
R~x,x8! D L

C

,

~2.21!

where

clW ~x!5exp~ ilW •VW x!, lW Þ0W ~2.22!

and ^•••& rep denotes the average over all replicated volta
and lattice configurations. An expression similar to E
~2.21! holds for the resistance to infinity:

^clW ~x!& rep5K expS 2
lW 2

2
R`D L

C

. ~2.23!

As we shall see later on, it is useful to define an indica
function that is unity ifx andx8 lay on the same cluster an
zero otherwise. Consider the limits→`. From the discus-
sion in Sec. II A it is clear thatR(x,x8)50 if x andx8 are
connected andR(x,x8)5` otherwise. This suggests definin
the indicator function in terms of the averag
^clW (x)c2lW (x8)& over all replicated voltage configuration
for a given realization of the diluted lattice as

x~x,x8!5 lim
s→`

^clW ~x!c2lW ~x8!&. ~2.24!

Similarly

x~x!5 lim
s→`

^clW ~x!& ~2.25!

indicates ifx is located on the infinite cluster.
Some remarks should be made at this point. Since infi

voltage drops between different clusters may occur, it is
guaranteed thatZ stays finite, i.e., the limit limD→0ZD is not
well defined. This problem can be regularized by switch
to voltage variables uW taking discrete values on
D-dimensional torus. The voltages are discretized by set
uW 5DukW , whereDu5uM /M is the gap between successi
voltages,uM is a voltage cutoff,kW is a D-dimensional inte-
ger, andM a positive integer. The components ofkW are re-
stricted to2M,k(a)<M and periodic boundary condition
are generated by equatingk(a)5k(a)mod(2M ). The con-
tinuum may be restored by takinguM→` and Du→0. By
setting uM5u0M , M5m2, and, respectively,Du5u0 /m,
the two limits can be taken simultaneously viam→`. Note
that the limit D→0 has to be taken before any other lim
Since the voltages andlW are conjugated variables,lW is af-
fected by the discretization as well:

lW 5Dl lW, DlDu5p, ~2.26!

wherelW is aD-dimensional integer taking the same values
kW . This choice guarantees that the completeness and orth
nality relations
e
.
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te
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~2M !D (
uW

exp~ ilW •uW !5dlW ,0W mod~2MDl! ~2.27a!

and

1

~2M !D (
lW

exp~ ilW •uW !5duW ,0W mod ~2MDu! ~2.27b!

do hold. Equation~2.27! provides us with the Fourier trans
form

FuW~x!5~2M !2D (
lW Þ0W

exp~ ilW •uW !clW ~x!5duW ,uW x
2~2M !2D

~2.28!

with the condition

(
uW

FuW~x!50. ~2.29!

Note that F is merely a Potts spin@24# with q5(2M )D

states.

C. Field theoretic Hamiltonian

We proceed with the evaluation of Eq.~2.18!. Carrying
out the average over the diluted lattice configurations p
vides us with the weight exp(2Hrep) of the average
^•••& rep:

H rep52 ln^exp~2 1
2 P!&C

5
iv

2 (
i

uW i•uW i

2(
i , j

ln^exp@2 1
2 s i , j~uW i2uW j !•~uW i2uW j !#&C .

~2.30!

By dropping a constant termNBln(12p) with NB being the
number of bonds in the undiluted lattice, we obtain

H rep5(
i

h~uW i !1(
i , j

K~uW i2uW j !, ~2.31!

where

h~uW !5
iv

2
uW •uW ~2.32!

and

K~uW !52 lnH 11
p

12p
expS 2

1

2
suW •uW D J . ~2.33!

The Fourier transform ofK,
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K̃~lW !52
1

~2M !D (
uW

exp~2 ilW •uW !

3 lnF11
p

12p
expS 2

1

2
suW •uW D G , ~2.34!

can be Taylor-expanded as

K̃~lW !5t1 (
p51

`

wp~lW 2!p, ~2.35!

with t and wp;s2p being expansion coefficients. SinceK

decays exponentially insuW 2, the series~2.35! may be termi-
nated after the quadratic term for larges. Further on we omit
factors (2M )2D which become unity in the limitD→0. We
define the discrete gradient¹uW through

(
uW

¹uWFuW~x!•¹uWFuW~x!5 (
lW Þ0W

lW 2clW ~x!c2lW ~x!

~2.36!

and obtain

K~DuW !5t2wDuW , ~2.37!

where w5w1. Similarly, the right-hand side of Eq.~2.32!
may be viewed as the leading term of an expansion

h~uW !5 (
p51

`

hp~uW 2!p ~2.38!

with h15 iv/2.
Now we can set up a field theoretic HamiltonianH in

compliance with the symmetries of the model. The aver
over the configurations of the diluted lattice renders
model symmetric under spatial translations and rotatio
Another feature of the model is that it is local since on
nearest neighbors enter in Eq.~2.1!. In the limit of perfect
transport (s→`) and in the absence of external fields (hp
50) the model is invariant against permutations of allq
5(2M )D states of the Potts spinsFuW(x). If one allowswp
Þ0, this Sq symmetry is lost. The model remains gau
invariant under a shift of the voltages by an arbitrary fin
potential as can be inferred from Eq.~2.1!. This symmetry
corresponds to translational invariance in replica spa
FuW(x)↔FuW 2uW 0

(x). Moreover, we deduce from the quadra
form of the power in Eq.~2.19! that the model possesses
O(D) symmetry in replica space. Additionally, admittin
hpÞ0 results in breaking of the gauge invariance.

We proceed with the usual coarse-graining step and
place the Potts spinsFuW(x) by the order parameter fiel
w(x,uW ). By constructing all possible invariants of the sym
metries discussed above from(uWw(x,uW )p and gradients
thereof, the following Hamiltonian in the spirit of th
Landau-Ginzburg-Wilson functional is obtained:
e
e
s.

e:

e-

H5E ddx(
uW

H 1

2
w~x,uW !K~D,DuW !w~x,uW !

1
g

6
w~x,uW !31h~x,uW !w~x,uW !J , ~2.39!

where terms of higher order in the fields have been negle
since they turn out to be irrelevant. The coarse-grained k
nel and external field must resemble the features of the o
nal K andh. This gives

H5E ddx(
uW

H t

2
w~x,uW !21

w

2
„¹uWw~x,uW !…21

1

2
„¹w~x,uW !…2

1
g

6
w~x,uW !31

iv

2
uW 2w~x,uW !J , ~2.40!

where t, w, and v are now coarse-grained analogs of t
original coefficients. Note thatH reduces to the usua
(2M )D-state Potts-model Hamiltonian by settingw5h50
as one retrieves purely geometrical percolation in the limit
vanishingh andw (s→`).

It is worth pointing out that the problem of calculating th
moments of the resistance distribution has been reshuf
MR

k 5^x(x,x8)Rk(x,x8)&C/^x(x,x8)&C may be obtained by
taking thekth derivative of

lim
D→0

^clW ~x!c2lW ~x!&H

5^x~x,x8!&C H 12
lW 2

2
MR

11 ¯ 1
1

k!
S 2

lW 2

2
D k

MR
k 1¯J

~2.41!

with respect tolW 2 at lW 250.

D. Scaling properties

We conclude this section with a scaling analysis of t
Hamiltonian ~2.39!. Let P denote the set of paramete
$wp ,hp% andb some scaling factor for the voltage variabl
uW→buW . By substitution of w(x,uW )5w8(x,buW ) into the
Hamiltonian we get

H@w8~x,buW !,P#

5E ddx(
uW

H 1

2
w8~x,buW !K~D,DuW !w8~x,buW !

1
g

6
w8~x,buW !31h~uW !w8~x,buW !J . ~2.42!

Renaming the scaled voltage variablesuW 85buW leads to

H@w8~x,uW 8!,P#

5E ddx(
uW 8

H 1

2
w8~x,uW 8!K~D,b2DuW 8!w8~x,uW 8!

1
g

6
w8~x,uW 8!31h~b21uW 8!w8~x,uW 8!J . ~2.43!
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Clearly a scaling of the voltage variable results in a scal
of the voltage cutoff:uM→buM . However, by taking the
limit D→0 and thenm→`, the dependence of the theory o
the cutoff drops out. No ultraviolet divergencies are enco
tered in integrations over voltage variables and hence
voltages are no origin of anomalous scaling. We can iden
uW 8 anduW and thus

H@w~x,buW !,P#5H@w~x,uW !,P8#, ~2.44!

where P85$b2pwp ,b22php%. We can conclude the follow
ing implication of Eq.~2.44! on correlation functions define
by

GN~$x,uW %;t,$wp ,hp%!5E Dww~x1 ,uW 1!•••w~xN ,uW N!

3exp„2H@w~x,uW !,P#…, ~2.45!

whereDw indicates an integration over the set of variab

$w(x,uW )% for all x anduW :

GN~$x,uW %;t,$wp ,hp%!5GN~$x,buW %;t,$b2pwp ,b22php%!.
~2.46!

The two-point correlation functionG2 is the Fourier trans-
form of ^clW (x)c2lW (x)&H . We deduce from Eq.~2.41! that

lW 2MR
1
„~x,x8!;t,$wp ,hp%…

5~b21lW !2MR
1
„~x,x8!;t,$b2pwp ,b22php%….

~2.47!

The freedom to chooseb has not been exploited yet. Wit
the choiceb25w21 the previous scaling relation turns into

MR
1
„~x,x8!;t,$wp ,hp%…5wMR

1S ~x,x8!;t,H wp

wp
,wphpJ D .

~2.48!

For p.1, coupling constantswp only appear aswp /wp. The
associated exponentpf2fp is of orderp21 as mean-field
analysis shows. This indicates that terms of orderwplW 2p for
p.1 give rise to corrections to scaling. We keep only t
leading termswlW 2 andh15 iv/2. By virtue of w;s21 the
resulting scaling relation reads

MR
1
„~x,x8!;t,s,v…5s21f „~x,x8!;t,v/s…, ~2.49!

wheref is a scaling function ofv/s.

FIG. 1. The principal propagator~bold! decomposes into two
propagators. One of them~light! is carrying currents and we refer t

it as conducting. The other one~dashed! is not carryinglW ’s and we
call it insulating.
g

-
e
y

s

III. TWO-LOOP CALCULATION
AND RENORMALIZATION

A. Diagrammatic expansion

To perform the renormalization program we start out w
a dimensional analysis. A trivial consequence of the fact t
the Hamiltonian~2.40! must be dimensionless is that the i
volved quantities have naive dimensionsx;m21, wlW 2

;m2, c;m (d22)/2, t;m2, and g;m (62d)/2, wherem is a
convenient inverse length scale. The positive dimension
the coupling constantg shows that it is relevant ford,dc
56.

The principal elements contributing to the diagramma
expansion are easily gathered from the Hamiltonian, nam
the vertex2g and the propagator

12dlW ,0W

p21t1wlW 2
5

1

p21t1wlW 2
2

dlW ,0W

p21t
, ~3.1!

which is displayed in Fig. 1.
The superficial degree of divergenced in any one-

particle-irreducible diagram composed of these element
d5dL22P, whereL denotes the number of loops andP the
number of propagators. The topologic relations 3V5E
12P andL5P2V11, with E being the number of externa
legs andV being the number of vertices, lead ford5dc to
d5622E. Therefore the only superficially divergent verte
functions areG2 andG3 ~see Fig. 2!.

B. Feynman diagrams as resistor networks

We learn from Eq.~3.1! that the principal propagato
~bold! decomposes into two propagators. One of them is c
rying replica currents and we refer to it as conducting. T
other one is not carryinglW ’s and we call it insulating. This
decomposition of the bold propagator allows for a schem
decomposition of bold diagrams into sums of diagrams c
sisting of conducting and insulating propagators.

There is an important feature of the decompositi
scheme that we want to point out at the instance of the
gram displayed in Fig. 3. The diagram reads

FIG. 2. The superficially divergent vertex functionsG2 andG3.
Terms ofO~three loop! have been neglected.

FIG. 3. A diagram encountered by decomposing the contri
tions toG2.
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g4

2 (
kW
E

kq

1

t1k21wlW 2

1

t1k2

1

t1k2

3
1

t1~k1q!21wkW 2

1

t1q21wkW 2
, ~3.2!

where *kq is an abbreviation for (2p)2d*ddkddq.
Schwinger parametrization leads to

~3.2!5
g4

2 (
kW
E

kq
E

0

`

)
i 51

5

dsi

3expS2t(
i 51

5

si2~s11s21s3!k2

2s4~k1q!22s5q2D exp@2~s41s5!wkW 22s1wlW 2#.

~3.3!

The sum overkW factorizes

(
kW

exp@2~s41s5!wkW 2#5S (
k

exp@2~s41s5!wk2# D D

~3.4!

and hence becomes unity in the limitD→0. What we en-
counter here in our example is a particular instance of
diagrammatic rule formulated in Fig. 4.

We apply the decomposition scheme to all one- and tw
loop diagrams. The result is displayed in Figs. 5–8.

From the decomposition, another interpretation of
Feynman diagrams emerges. They may be viewed as res
networks themselves with conducting propagators co
sponding to conductors and insulating propagators to o
bonds. The Schwinger parameterssi correspond to resis
tancess i

21 and the replica variables2 ilW i to currents. As
conservation of charge holds for every ramification in a

FIG. 4. An important feature of the decomposition of the bo
diagrams. By applying the decomposition scheme, one may ob
subdiagrams which are connected to the rest of their diagram s
by insulating legs. The hatched blob on the left-hand side stand
such a subdiagram. For each closed loop of conducting propaga

a sum over an independentkW has to be performed. In the limitD
→0, these sums merely result in multiplicative factors equal to
Thus all conducting propagators can be replaced by insulating
and there are no summations necessary in the subdiagram.

FIG. 5. Decomposition of the one-loop diagram contributing
G2.
e

-

e
tor
-

en

-

sistor network, thelW ’s are conserved in each vertex. Th
lW -dependent part of a diagram can be expressed in term
its powerP:

expS 2w(
i

silW i
2D 5exp@wP~lW ,$kW %!# ~3.5!

with lW i5lW i(lW ,$kW %), where~apart from a factor2 i ) lW is an
external current and$kW % denotes the set of independent loo
currents.

The new interpretation suggests an alternative way
computing the Feynman diagrams. To evaluate sums o
independent loop currents

(
$kW %

exp@wP~lW ,$kW %!#, ~3.6!

one can employ the saddle point method that is exact in
case since the power is quadratic in the currents. Note
the saddle point equation is merely the variation princi
stated in Eq.~2.17!. Thus solving the saddle point equation
is equivalent to determining the total resistanceR($si%) of a
diagram, and the saddle point evaluation of Eq.~3.6! yields

exp@2R~$si%!wlW 2#. ~3.7!

After a completion of squares in the momenta, the mom
tum integrations are straightforward. Thereafter, all diagra
are of the form

I ~p2,lW 2!5I P~p2!2I W~p2!wlW 21•••

5E
0

`

)
i

dsi@12R~$si%!wlW 21•••#D~p2,$si%!,

~3.8!

in
ly
or
rs,

.
es

FIG. 6. Decomposition of the two-loop diagrams contributing
G2.

FIG. 7. Decomposition of the one-loop diagram contributing
G3.
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whereD(p2,$si%) is a usual integrand of thef3 theory.

C. Renormalization

We use dimensional regularization@25# to compute the
various diagrams obtained by decomposition. Appendix
outlines these calculations in terms of examples. As the
sult of ane expansion up to second order ine21, we obtain
for the superficially divergent parts of the vertex function

G2~p,lW ;t,g,w!5t1p21wlW 22g2
Ge

e
t2e/2H S 11

e

2D t

1
1

6
p21

5

6
wlW 2J 1g4

Ge
2

e2
t2eH S 9

4

1
45

16
e D t1S 11

36
1

7

432
e Dp2

1S 65

36
1

169

432
e DwlW 2J ~3.9a!

and

G3~$0,lW %;t,g,0!5g22g3
Ge

e
t2e/2

1g5
Ge

2

e2
t2eS 11

2
1

13

8
e D , ~3.9b!

FIG. 8. Decomposition of the two-loop diagrams contributing
G3.
e-

whereGe5(4p)2d/2G(11e/2) with G denoting the Gamma
function. We included the convergent term2g2t12e/2Ge/2
in Eq. ~3.9a! since it is important in the calculation of th
two-loop contribution to the correspondingZ factor. The ver-
tex functions~3.9! are apart from terms proportional towlW 2,
identical to those of the Potts model.

Thee poles are compensated by minimal subtraction. W
employ the following renormalization scheme:

c→c̊5Z1/2c, t→ t̊5Z21Ztt, ~3.10a!

w→ẘ5Z21Zww, g→g̊5Z23/2Zu
1/2Ge

21/2u1/2me/2.
~3.10b!

In minimal subtraction theZ factors have to be determine
such that they solely cancel thee poles. We find

Z511
1

6

u

e
2

37

432

u2

e
1

11

36

u2

e2
1O~u3!, ~3.11a!

Zt511
u

e
2

47

48

u2

e
1

9

4

u2

e2
1O~u3!, ~3.11b!

Zw511
5

6

u

e
2

319

432

u2

e
1

65

36

u2

e2
1O~u3!, ~3.11c!

Zu5114
u

e
2

59

12

u2

e
111

u2

e2
1O~u3!, ~3.11d!

with Z, Zt , andZu being the known Potts-modelZ factors.

IV. RENORMALIZATION GROUP EQUATION
AND SCALING

The unrenormalized theory has to be independent of
length scalem21 introduced by renormalization, i.e.,

m
]

]m
G̊N~$p,lW %; t̊,g̊,ẘ!50 ~4.1!

for all N. Equation~4.1! translates via the Wilson functions

b~u!5m
]u

]m
, k~u!5m

] lnt

]m
, ~4.2a!

z~u!5m
] lnw

]m
, g~u!5m

]

]m
ln Z ~4.2b!

~the bare quantities are kept fixed while taking the deri
tives! into the Gell-Mann-Low renormalization group equ
tion

Fm ]

]m
1b

]

]u
1tk

]

]t
1wz

]

]w
1

N

2
gG

3GN~$x,lW %;t,u,w,m!

50. ~4.3!
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The particular form of the Wilson functions can be extrac
from the renormalization scheme and theZ factors. We find

b~u!5uS 7

2
u2

671

72
u22e D1O~u4!, ~4.4a!

k~u!5
5

6
u2

193

108
u21O~u3!, ~4.4b!

z~u!5
2

3
u2

47

36
u21O~u3!, ~4.4c!

g~u!52
1

6
u1

37

216
u21O~u3!. ~4.4d!

The renormalization group equation is solved by the met
of characteristics. The characteristics read

l
]m̄

] l
5m̄ with m̄~1!5m, ~4.5a!

l
]ū

] l
5b„ū~ l !… with ū~1!5u, ~4.5b!

l
]

] l
lnt̄5k„ū~ l !… with t̄~1!5t, ~4.5c!

l
]

] l
lnw̄5z„ū~ l !… with w̄~1!5w, ~4.5d!

l
]

] l
lnZ̄5g„ū~ l !… with Z̄~1!51. ~4.5e!

Solving the first one is trivial. For the remaining charact
istics, fixed point solutions are determined. The fixed po
conditionb(u* )50 leads to the infrared stable fixed poin

u* 5
2

7
e1

671

3087
e21O~e3!. ~4.6!

We obtain

GN~$x,lW %;t,u,w,m!5 l g* N/2GN~$x,lW %;t l k* ,u* ,wlz* ,m l !,
~4.7!

whereg* 5g(u* ), k* 5k(u* ), and z* 5z(u* ) as a fixed
point solution of the renormalization group equation.

To get a scaling relation for the correlation functions
dimensional analysis remains to be performed. It yields

GN~$x,lW %;t,u,w,m!

5m~d22!N/2GN~$mx,m21w1/2lW %;m22t,u,1,1!.

~4.8!

From Eq.~4.7! and Eq.~4.8! we derive the scaling relation
d

d

-
t

GN~$x,lW %;t,u,w,m!

5 l ~d221h!N/2GN~$ lx,l z* /221lW %; l 21/nt,u* ,w,m!

~4.9!

with the well known critical exponents for percolation,

h5g* 52
1

21
e2

206

9261
e21O~e3! ~4.10!

and

n5~22k* !215
1

2
1

5

84
e1

589

37 044
e21O~e3!.

~4.11!

f remains to be determined. A glance at Eq.~2.41! shows
that

MR
1;lW 22. ~4.12!

The scaling properties oflW can be deduced from Eq.~4.9!
and hence

MR
1;ux2x8u22z* . ~4.13!

Thus we finally obtain

f5n~22z* !511
1

42
e1

4

3087
e21O~e3! ~4.14!

in conformity with the result by Harris and Lubensky.

V. RATIONAL APPROXIMATION

Since the exact value off is known to be unity not only
in d>6 dimensions but also in one dimension, it is reaso
able to do a rational approximation. The featuref(d51)
51 is incorporated by rewritingf as

f511eS 1

42
1

4

3087
e2

187

154 350
e21O~e3! D , ~5.1!

being identical up to second order to thee-expansion result.
In Fig. 9 we compare the analytic result to numerical es
mates ford52 by Grassberger@26# and d53 by Gingold
and Lobb@27#. The extrapolated valuef(d52)51.04 devi-
ates from the simulation result 0.982560.008 by roughly
5%. In d53 one obtainsf(d53)51.05 compared to the
numerical estimate 1.11760.019. Here the deviation is abou
6%.

The good agreement should be taken with caution. Du
the rich structure of the exponenth in the percolation prob-
lem, the exponentc5gw* 5f/n221h might be better
suited for comparison to simulations. Rational approximat
of c yields

c5eS 2
5

21
2

187

3087
e1

334

15 435
e21O~e3! D . ~5.2!

This is compared to the simulations in Fig. 10. The agr
ment for d53 is reasonable. As expected, the discrepa



e
.

to
ti
he

n
et
a
s

T
im

e
ill

ad-
ich
ts
aths
this

s
re-

te

eich
he

the

-
g
nd

e is
are

o-
es

he

l
er

y

e

th

and
ia-

ts in
otts

PRE 59 4927CRITICAL EXPONENTS FOR DILUTED RESISTOR NETWORKS
increases ford decreasing. Ford52, the analytic result looks
unrealistic. The structure ofc appears to be too rich to b
reproduced at low dimensions by a series of a few terms

VI. CONCLUSIONS AND OUTLOOK

We have presented a study of randomly diluted resis
networks based on an approach by Stephen. The motiva
has been twofold. First, we wanted to verify a result for t
resistance crossover exponentf obtained by Lubensky and
Wang using a different approach. Our result forf is in ab-
solute agreement with that of Lubensky and Wang. Seco
we wanted to simplify the theory of random resistor n
works. We demonstrated how a decomposition scheme le
to a new interpretation of the involved Feynman diagram
they may themselves be viewed as resistor networks.
new interpretation of the Feynman diagrams greatly
proves the handling of the calculations.

FIG. 9. Dependence of the exponentf on dimensionality. Thee
expansion up to first~diamonds! and second order~squares! as well
as the rational approximation~triangles! are compared to numerica
results~circles! by Grassberger and Gingold and Lobb. They det
mined the exponentt for the conductivityS, S;up2pcu t, by simu-
lations. t is related tof via f5t2(d22)n. In d52, n is known
exactly @28,29#: n54/3. Ford53 we use a Monte Carlo result b
Ziff and Stell @30#: n50.87560.008.

FIG. 10. Dependence of the exponentc5(t2g)/n122d on
dimensionality. As in Fig. 9, diamonds and squares refer to the
expansion, triangles to the rational approximation, and circles
numerical results by Grassberger and Gingold and Lobb. For
exponent g governing the mass of finite clusters, we useg
543/18 @28,29# for d52 andg51.79560.005@30# for d53.
r
on

d,
-
ds
:

he
-

We are positive that our formulation will foster futur
investigations in transport on percolation clusters. As we w
report shortly in a separate publication, it proved to be
vantageous for nonlinear random resistor networks for wh
V;I r . In the limit r→10, the resistance between two poin
becomes essentially equal to the length of the shortest p
between these points. Our result for the exponent for
so-called chemical distance dmin522e/62@937/588
145/49(ln229/10ln3)#(e/6)21O(e3) verifies a previous
calculation by one of us@31#. The limit r→` is related to the
red~singly connected! bonds. Our two-loop calculation give
unity for the corresponding exponent in accordance with
sults by Blumenfeld and Aharony@32# and de Arcangeliset
al. @33#. Moreover, our formulation enabled us to calcula
the percolation backbone exponentDB to third order ine by
considering the limit r→21. We find DB521e/21
2172e2/926112@274639122680z(3)#e3/4084101, where
z denotes the Riemann zeta function.
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APPENDIX A: EVALUATION OF DIAGRAMS

In this appendix we want to sketch the computation of
Feynman diagrams. The evaluation of contributions toG3 is
straightforward. By virtue ofd50 one can set external mo
menta andwlW ’s equal to zero. Hence all diagrams resultin
from one bold diagram are giving the same contribution a
the decomposition reduces to a mere factor. An exampl
given in Fig. 11. The diagrams obtained in this fashion
the usual ones found in the literature on the Potts model@34#
and can be evaluated by standard procedures@35#.

Now we turn toG2. SinceG2 is superficially divergent
with degreed52, a Taylor expansion up to first order inp2

and wlW 2 is sufficient. Contributions of order zero and pr
portional top2 are again standard. Thus we restrict ourselv
to demonstrate the computation of contributions toG2 pro-
portional towlW 2.

We revisit our example of Sec. III and start with Eq.~3.3!.
As we have concluded, the sum overkW merely gives a factor
of 1. After a completion of squares in the momenta, t
momentum integrations are straightforward. We get

-

to
e

FIG. 11. SinceG3 is superficially divergent withd50, it is
sufficient to evaluate the diagrams at zero external momenta
currents. Thus all diagrams resulting from one bold three-leg d
gram are giving the same contribution. The decomposition resul
a mere factor, being identical to the tensor contraction in the P
model.
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~3.3!5
g4

2

1

~4p!dE0

`

)
i 51

5

dsi

3

expS 2t(
i 51

5

si D
@~s41s5!~s11s21s31s4!2s4

2#d/2
exp~2s1wlW 2!.

~A1!

At this stage it is useful to perform a change of variabl
s4→t1 , s5→t2 , s1→t3x, s2→t3y, ands3→t3(12x2y). In
these variables the integral reads

~A1!5
g4

2

1

~4p!dE0

`

dt1dt2dt3

3E
0

1

dxE
0

12x

dyt3
2 exp@2t~ t11t21t3!#

@ t3t11t3t21t1t2#d/2

3exp~2t3xwlW 2!. ~A2!

After expansion for smallwlW 2, the integrations with respec
to x andy are easily carried out. We omit the term of ord
zero and obtain

~A2!52
g4

2

wlW 2

~4p!dE0

`

dt1dt2dt3
1

6

exp@2t~ t11t21t3!#

@ t3t11t3t21t1t2#d/2
t3
3 .

~A3!

Equation~A3! can be expressed in terms of a parameter
tegral,

M1~a,b,c!5E
p,q

1

~a1p2!~b1q2!@c1~p1q!2#

5
1

~4p!dE0

`

dt1dt2dt3
exp@2~at11bt21ct3!#

@ t3t11t3t21t1t2#d/2

~A4!

by taking partial derivatives with respect toa, b, or c at a
5b5c5t. This parameter integral was introduced
Breuer and Janssen@36#. They find in dimensional regular
ization

M1~a,b,c!5
Ge

2

6e H S 1

e
1

25

12D ~a32e1b32e1c32e!

2S 3

e
1

21

4 D @a22e~b1c!1b22e~a1c!

1c22e~a1b!#23abcJ . ~A5!

In terms of this parameter integral, Eq.~A3! reads

~A3!52wlW 2
g4

2 H 2
1

6

]3M1

]c3 U
a5b5c5t

J ~A6!

and is easily evaluated yielding
:

-

~A6!52wlW 2
g4

2

Ge
2

e
t2eH 2

1

6e
2

3

8J . ~A7!

As a second example we take the rightmost diagram in
first line of Fig. 6. This diagram corresponds to the resis
network in Fig. 12. The total resistance of this network is

R~s1 ,s2 ,s3 ,s4!5
~s11s2!~s31s4!

~s11s21s31s4!
. ~A8!

Hence the saddle point evaluation of

g4

2 (
kW
E

kq
E

0

`

)
i 51

5

dsiexpS 2t(
i 51

5

si2~s11s3!k22s5q2D
3exp@2~s21s4!~k1q!22~s11s2!wkW 2

2~s31s4!w~kW 1lW !2# ~A9!

gives

~A9!52
g4

2

wlW 2

~4p!d E0

`

)
i 51

5

dsi

~s11s2!~s31s4!

~s11s21s31s4!

3

expS 2t(
i 51

5

si D
@s5~s11s21s31s4!1~s21s4!~s11s3!#d/2

,

~A10!

where we have already carried out the momentum integ
tions and the expansion for smallwlW 2. The change of vari-
abless2→t1x, s4→t1(12x), s1→t2y, s3→t2(12y), and
s5→t3 recasts the integral into

~A10!52
g4

2

wlW 2

~4p!dE0

`

dt1dt2dt3

3E
0

1

dxdyt1t2

exp@2t~ t11t21t3!#

@ t3t11t3t21t1t2#d/2

3
~ t1x1t2y!@ t1~12x!1t2~12y!#

t11t2
. ~A11!

Carrying out the integrations with respect tox andy yields

FIG. 12. The resistor network corresponding to the rightm
diagram in the first line of Fig. 6. The conducting propagators
interpreted as conductors whereas the insulating propagators
interpreted as open bonds. The Schwinger parameterssi correspond
to resistances.
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~A11!52
g4

2

wlW 2

~4p!dE0

`

dt1dt2dt3
t1t2

t11t2

3
exp@2t~ t11t21t3!#

@ t3t11t3t21t1t2#d/2 H 1

6
t1
21

1

6
t2
21

1

2
t1t2J .

~A12!

Since a similar structure emerges in several diagrams,
introduce an additional parameter integral

M2~a,b,c!5
1

~4p!dE0

`

dt1dt2dt3
t1t2

t11t2

3
exp@2~at11bt21ct3!#

@ t3t11t3t21t1t2#d/2
. ~A13!

We calculate M2(a,b,c) in dimensional regularization
which yields

M2~a,b,c!5
Ge

2

2e H S 1

e
1

5

4D ~a22e1b22e!

1
1

3 S 1

e
1

19

12D c22e1ab1
1

2
~a1b!cJ .

~A14!

Now we can evaluate Eq.~A12! by taking derivatives of
M2(a,b,c):

~A12!52wlW 2
g4

2 H 1

3

]2M

]a2 U
a5b5c5t

1
1

2

]2M

]a]bU
a5b5c5t

J .

~A15!

We finally obtain

~A15!52wlW 2
g4

2

Ge
2

e
t2eH 1

3e
1

1

6J . ~A16!

The remaining two-loop diagrams contributing toG2 can
be treated in a similar fashion. However, the two diagram
Fig. 6 containing only light propagators are calculated m
conveniently by observing that momenta and replica v

FIG. 13. A convenient way to extract the contributions prop

tional to wlW 2 from diagrams not containing insulating propagato
e

n
t

i-

ables play exactly the same role in these diagrams~see Fig.
13!. Appendix B gives an overview of the two-loop diagram
contributing toG2 in terms ofM1 andM2.

APPENDIX B: THE DIAGRAMS IN TERMS
OF PARAMETER INTEGRALS

Here we list our results for the diagrams contributing
G2, as far as they have not been stated in Appendix A.
convenience we use the notation

Mi , j ,l
1,2 5

~21! i 1 j 1 l 23

~ i 21!! ~ j 21!! ~ l 21!!

] i 1 j 1 l 23

]ai 21]bj 21]cl 21

3M1,2~a,b,c!ua5b5c5t ~B1!

and

I 35E
p

1

~t1p2!3
. ~B2!

Those parts of the diagrams proportional towlW 2 are dis-
played in Fig. 14. The remaining parts can be inferred fr
literature on the Potts model.

-

.

FIG. 14. Listing of contributions to the diagrammatic expansi

proportional towlW 2. The right-hand sides remain to be multiplie

by a factor2wlW 2Ge
2/e, which we dropped for notational simplic

ity.
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